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A detailed experimental study on the formation of crossflow vortex mode packets
and their high-frequency secondary instability in a swept-wing boundary layer was
carried out. Stationary vortex packets are most likely to be generated under natural
flight conditions and transition to turbulence is quickest within these disturbances.
In the present experiments, different methods of controlled excitation are used
so that the crossflow vortex packets are generated by surface-roughness elements
and by localized continuous suction. It is found that as the stationary disturbance
reaches a significant amplitude, of about 10 % of the free-stream velocity, while
being below the saturation level, high-frequency secondary instabilities start to
grow. Influence of the crossflow vortex packet magnitude on the development of
the secondary instability is investigated in detail and below its threshold the crossflow
vortex packet was found to be nearly neutrally stable. By studying the unstable
packets, the frequency of natural secondary perturbations was identified and the
travelling disturbances were forced in a controlled manner by periodic blowing–
suction applied locally under the stationary vortex. Two modes of secondary instability
were found to develop and the preferred mode was dependent on the properties of the
primary stationary disturbance. Additionally, the underlying physics of the process
of nonlinear formation and development of the vortices in the boundary layer is
clarified. It was observed that the large-amplitude co-rotating vortices may interact,
thus reducing their amplitude. Also a large-scale excitation by an isolated roughness
element produced two individual stationary crossflow vortex packets at its tips, each
with different preferred secondary instability modes.

1. Introduction
There are a number of indications that three-dimensional velocity perturbations

such as streamwise vortices and streaks are involved in transition to turbulence
in wall-bounded shear layers. Creating local flow distortions, they induce velocity
gradients in spanwise and wall-normal directions, which in turn lead to the growth
of secondary high-frequency disturbances with further laminar-flow breakdown. This
transitional phenomenon seems to be general for different configurations (Kohama
et al. 2000) including a flat-plate boundary layer (Matsubara & Alfredsson 2001),
a three-dimensional one (Kohama, Onodera & Egami 1996), a plane Poiseuille
flow (Elofsson, Kawakami & Alfredsson 1999), a flow in a rotating curved channel
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(Matsson & Alfredsson 1990) and that over a concave wall (Ito 1988). It can be
noted that similar processes are distinguished in near-wall turbulence as was shown
by Schoppa & Hussain (2002).

Secondary instabilities of three-dimensional boundary layers were at first focused
on by Poll (1979, 1985), who observed high-frequency oscillations near the swept-
wing leading edge and on a swept cylinder. Later, Kohama (1987) assumed that such
perturbations can be caused by an inflection-point instability in the vortex core. A
theory for the secondary disturbances, such as those associated with inflections in
the velocity distributions induced by the stationary crossflow vortices, was developed
further by Fischer & Dallmann (1991) who used experimental results by Nitschke-
Kowsky & Bippes (1988) as initial data for the analysis based on the Floquet theory.
Then, theoretical studies on the topic were carried out by Malik, Li & Chang (1994),
Malik et al. (1999), Haynes & Reed (1997, 2000), Janke & Balakumar (2000) and
Koch et al. (2000), where the Floquet theory was employed as a basis for temporal
secondary instability analysis. To simplify the problem, which involves a number
of parameters, Koch et al. (2000) investigated equilibrium solutions, which were
independent of the initial conditions, and in a more recent study Koch (2002), using
the saddle-point continuation method, found that the wave packets of high-frequency
secondary disturbances are convectively unstable. In fact, he has pointed out that
one can approach the problem by a spatial marching technique such as parabolized
stability equations. Saric, Reed & White (2003) provide a detailed review of recent
studies in this field.

The first spatial direct numerical simulation of the swept-wing secondary instabi-
lity, applying to the Falkner–Skan–Cooke similarity solution, was performed by
Högberg & Henningson (1998). They examined both a small-amplitude random
(‘natural’) disturbance added to a saturated crossflow vortex and its harmonic
perturbation. It was found that the growth rate of the high-frequency secondary
disturbance is considerably larger than that of the low-frequency one, thus, the
importance of high-frequency secondary instabilities for laminar-flow breakdown was
emphasized. Wassermann & Kloker (2002) also performed spatial direct numerical
simulation focusing on an infinite swept-wing flow. In their case, secondary instabilities
induced by the saturated crossflow vortices were investigated, their convective nature
was confirmed and conditions for the instability onset were considered. Additionally,
they demonstrated that saturated uniform crossflow vortices initiated by a single
crossflow vortex mode are less unstable than those produced by a packet of modes.
Also, it was found that reduction of spacing between the saturated vortices leads to
stabilization of the modulated boundary layer.

To support the results of calculations and to deepen understanding of the pheno-
menon a number of experimental studies have been carried out. Kohama, Saric &
Hoos (1991) emphasized that the high-frequency secondary instabilities originate in
regions of strong vorticity and shear away from the wall at about half the boundary-
layer thickness. Kohama et al. (1996) presented results on the amplification of the
secondary modes from a swept flat-plate experiment. Deyhle & Bippes (1996) also
focused on a high-frequency disturbance riding on top of the primary waves prior to
a local breakdown to turbulence.

In a series of wind-tunnel experiments, different techniques of controlled disturbance
excitation, applied to the primary steady and secondary unsteady instabilities, were
used successfully. Using this technique, Kawakami, Kohama & Okutsu (1999) obtained
growth curves and amplitude distributions of the secondary perturbations. Boiko et al.
(1995a, b, 1998, 2000) investigated different aspects of the problem experimentally. It
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was shown that the amount of secondary instability depends on how the primary
vortices are generated and on their spanwise spacing. In Boiko et al. (2000), it was also
noticed that packets of stationary crossflow modes are more unstable as compared
to single-mode crossflow vortices. Additionally, linearity of the travelling distur-
bances at the initial stage of their amplification was confirmed and a local instability
mechanism associated with velocity gradients induced by the primary vortices was
supported. White et al. (2001) and White & Saric (2005) reported results obtained
under different initial steady conditions, focusing on two major types of high-frequency
secondary instability modes. These are a ‘y ’ mode and a ‘z ’ mode, which are analogous
to a symmetric (also horseshoe, varicose) mode and an anti-symmetric (meandering,
sinuous) mode of two-dimensional flows modulated by streaks. White et al. and
White & Saric excited the primary stationary modes artificially, while the secondary
instabilities under investigation occurred naturally. Authors have used band-pass fil-
tering to separate different high-frequency secondary instability modes. Extensive stud-
ies of these modes have been performed experimentally (Asai, Minagawa & Nishioka
2002; Chang, Chernoray & Löfdahl 2003; Kozlov et al. 2004) as well as numerically
(Andersson et al. 2001; Schoppa & Hussain 2002; Brandt & Henningson 2002; Skote,
Haritonidis & Henningson 2002) in two-dimensional flows. The ‘z ’ mode was found to
dominate when the primary vortex wavelength was short and the ‘y ’ mode dominated
when the vortex spacing was large. Thus, it was concluded that the most important
factor for the secondary instability is the wavelength of the stationary perturbations.

Under natural conditions of wing flow transition, packets of stationary crossflow
vortex modes, rather than single-mode vortices, develop in the boundary layer.
Furthermore, recent studies show that secondary instabilities develop in a different
way on the vortex packets than on the single-mode vortices. As was mentioned
above, both calculations (Wassermann & Kloker 2002) and experiments (Boiko et al.
2000) show higher instability of packets of stationary crossflow modes as compared
to single crossflow vortex modes, hence, a lower limit for secondary instability can
be obtained through a consideration of the stability of such packets. The stability
properties of crossflow vortex packets is investigated in some detail by Wassermann &
Kloker (2002) and in experiments by Kozlov, Sova & Shcherbakov (2001), however,
a deeper understanding is needed. Moreover, there are some indications that for
crossflow vortices it is not absolutely required to reach a saturation state for a
secondary instability to start to grow. This can be observed from the measurement
data of Boiko et al. (1997) and from the secondary instability analysis of Malik et al.
(1999). Thus, unsaturated vortices may lead to laminar-flow breakdown and this issue
requires additional investigation.

To complement the above data on secondary instabilities in swept-wing boundary
layers, the present experiments were designed with the idea of modelling the pheno-
menon under fully controlled conditions. In this work, which uses an experimental
set-up similar to that of Boiko et al. (2000), the ‘y ’ and ‘z ’ high-frequency secondary
instability modes of various packets of stationary crossflow vortex modes are
investigated both separately and at their interaction. In particular, this is performed
with an implication to the transition prediction and control in three-dimensional
boundary layers. According to White et al. (2001) and Saric et al. (2003), the
location of secondary instability onset can be used as the transition location, and the
investigation of factors responsible for the instability onset is crucial in establishing
the transition prediction and control criteria. In our case, to resolve the secondary
disturbances as much as possible, a method of hot-wire visualization is employed, and
quantitatively resolved flow topology is also given. Thus, wind-tunnel results presented
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Figure 1. The swept-wing model. Chordwise (xc , z
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coordinate systems are shown. Dimensions are in mm.

in what follows provide in great detail the three-dimensional flow characteristics as
was accomplished before for the two-dimensional boundary layer by Asai et al. (2002).

2. Experimental set-up and procedure
All experiments were conducted at Thermo and Fluid Dynamics, Chalmers

University of Technology. The wind tunnel has a closed circuit and a test section
3m long, 1.8 m wide and 1.2 m high with a maximum velocity of 60 m s−1. A detailed
description of the facility is provided by Chernoray et al. (2005). The free-stream
turbulence level in the test section is well below 0.1 % of Q0 in the velocity range of
Q0 = 5–15 m s−1 at frequencies between 0.1 and 10 000 Hz. The flow temperature can
be controlled with a precision of ±0.1 ◦C. Velocity in the wind tunnel was monitored
using a Pitot-static tube connected to a digital micro-manometer, which also has
sensors for temperature and absolute pressure readings. All the experimental runs
discussed in what follows were performed with an oncoming flow velocity of 8.2 m s−1,
making the chord-based Reynolds number about 390 000.

The wing model is made of wood and has a C-16 aerofoil profile as depicted in
figure 1, which was positioned at the sweep angle, Λ, of 45◦. Chord length, c, in this
configuration of sweep was 707 mm and the chord as measured perpendicular to the
wing leading edge, cc, is 500 mm. The model spanned the entire width of the wind-
tunnel test section. As can be seen in figure 1, the top side of the wing after 0.4 chord
represents a flat surface, thus allowing study of the flow without the presence of a wall-
curvature effects. The wing was mounted horizontally in the middle of the test section
on a stand extending outside the wind tunnel. Using this stand the angle of attack and
height of the model could be altered. For the purpose of this experiment, the angle
of attack was chosen so that no separation occurred in the area of measurements,
after 0.3 chord. This condition was satisfied when the top flat surface of the wing
created a diffuser and was angled from the horizon at approximately 2◦. A sandpaper
strip was placed close to the leading edge on the bottom side of the model to prevent
large-scale separation and to avoid associated global unsteadiness of the flow.

Two coordinate systems, i.e. wind-tunnel-related (x, z) and wing-related (xc, zc), are
also depicted in figure 1. The wing-related coordinate system is such that xc lies
perpendicular to the wing leading edge and zc is in the spanwise direction. Since
the angle of incidence of the top wing surface was fairly small (2◦), it is assumed
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that the y-axes of the wind-tunnel-related coordinate system and the wing-related
coordinate system are coincident, thereby simplifying the measurements. To compare
experimental and theoretical velocity profiles, some results are depicted in the frame
of reference of the external flow streamline, using the coordinate system (xs, zs).

All the data were acquired from hot-wire measurements in z slices along the leading
edge of the wing, as shown in figure 1. Single cross-planes are represented as they
were measured in the wing-related coordinate system. However, for clarity, the axis
zc in the graphs is shifted so that its origin is coincident with the origin of the
wind-tunnel-related coordinate system. For a sweep angle of 45◦, the transformation
is as follows:

z∗
c = zc − xc tan Λ = zc − xc. (2.1)

This allows the origin of the z∗
c-axis to be in-line with the blowing–suction hole as

depicted in figure 1.
Stationary crossflow vortices were generated in the laminar boundary layer by

roughness elements or by localized continuous suction. The perturbation of the layer
was performed at 0.3 of the wing chord, see figure 1. The procedure of the vortex
generation and experimental configurations are described in more detail in § 3.2.

High-frequency travelling disturbances evolving along the streaks were excited by
periodic blowing–suction through a hole of 0.8 mm in diameter on the surface of
the model at 0.4 chord. The oscillations were produced by a loudspeaker and the
excitation frequency was 210 Hz. This frequency is close to the one which is most
amplified naturally for different types of instability modes.

The velocity data was obtained through hot-wire measurements by single and V-
wire probes. The hot wires were calibrated in the free stream versus the Pitot-static
tube. Details on the experimental procedure as well as on the measurement equipment
used can be found in Chernoray et al. (2005). Typically, the calibration resulted in
an error of less than 0.5 % for all points in the calibration range. A unique hot-
wire traversing mechanism was developed, which is computer controlled and can be
completely automated for long experimental runs through definition of a geometrical
mesh of measurement points. Equipped with servo-motors it can sustain an absolute
coordinate system with an accuracy of 10 µm in the x and z directions, and 5 µm in y

direction. The acquisition system is the IOTech Wavebook 516 sampling module with
expansion unit, enabling a 16-bit, 1 MHz sample and hold with full analogue and
digital triggering options. The software used to control the sampling and saving of
data files is linked into a program for automated triggered flow measurements using
the traversing system and a pre-defined mesh of sampling points. Using this high-
precision equipment and a fully automated experimental procedure, it was possible
to obtain detailed experimental data.

After the data were collected, post-processing was carried out in the software
package Matlab (Matrix Laboratory, USA). Voltage traces were converted to velocity
traces and phase averaged to give a single period of the oscillation. These are then
assembled to form a four-dimensional spatial and temporal matrix U (x, y, z, t). For
the spectral analysis either raw or ensemble-averaged velocity traces were used.

3. Results and discussion
3.1. Basic flow

Without the excitation of disturbances, a typical laminar flow was formed on the
top surface of the wing, which had an initial region of acceleration followed by
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Figure 2. Undisturbed non-dimensional (scaled by Qe) velocity profiles measured at the
station x/c = xc/cc = 0.3, where the roughness element is placed. Profiles of streamwise and
spanwise velocity components are shown in different coordinate systems; θ = 0.31 mm at this
station. Solid lines indicate Falkner–Skan–Cooke similarity solution for m= 0.04 and φ =40.8◦;
dashed lines are guiding through the experimental points.

an area of flow deceleration. Velocity profiles obtained at 0.3 chord, where the
roughness element was located, are demonstrated in figure 2. The profiles are shown
in different coordinate systems: wind-tunnel-related (x, z), wing-related (xc, zc) and
external streamline-related (xs, zs). The wall-normal coordinate, y, in this figure and
everywhere in what follows is scaled by the boundary-layer momentum thickness, θ ,
which is defined using only the streamwise velocity component, Us . As can be seen, the
basic flow in this station is approximated well by the Falkner–Skan–Cooke similarity
solution for an accelerated boundary layer with an external streamline angle φ equal
to 40.8◦, which corresponds to the local external flow angle at this station.

Owing to the continuous deceleration of the potential flow downstream of 0.3 chord,
the boundary-layer properties are changed. Downstream of 0.5 chord, a nearly self-
similar Falkner–Skan–Cooke boundary layer is formed with m = −0.05. Figure 3(a, b)
demonstrates good agreement of the external velocity variation and of the integral
boundary layer parameters with the theoretical prediction. In this figure, the shape
factor, H12, is defined as the ratio of boundary-layer displacement thickness to
momentum thickness. The theoretical shape factor is 2.71 and as can be seen, a minor
scatter of measurements around the theoretical value exists with little deviation and
the flow is nearly perfectly uniform. The theoretical variation of external velocity and
boundary-layer momentum thickness is as follows:

Uce = Q0 cos Λx−0.05
c , (3.1)

Wce = Q0 sin Λ, (3.2)

θ = Θ

(
νx∗

Qe

)1/2

, (3.3)

where x∗ is the streamwise coordinate x shifted by the origin of the virtual leading edge
(0.1 m) and Θ = 0.741 is the non-dimensional momentum thickness of the Falkner–
Skan–Cooke boundary layer, see Corbett & Bottaro (2001) for details.
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Figure 3. (a) Downstream distribution of streamwise, Uc (�) and spanwise, Wc (�) potential
flow velocity components; (b) distribution of boundary-layer displacement thickness, θ (�),
and shape factor, H12 (�); (c) profiles of streamwise Us and spanwise Ws velocity in coordinate
system of external flow streamline. In all graphs lines denote theory for m = −0.05.

Mean velocity profiles for different streamwise positions within 0.47 to 0.75
wing chord were measured at the airfoil spanwise centreline, and some of them,
corresponding to the range of subsequent transition measurements, are shown in
figure 3(c). The illustrated velocity profiles are given in the external streamline
coordinate system. Here, the similarity solution is obtained for φ = 44.3◦, which
corresponds to the average external flow angle for the experimental profiles shown.
In this figure, good collaboration between the data and the theoretical solution can
be observed. Thus, a well-defined flow is obtained on the model with a characteristic
Reynolds number, Reθ , at the location of the roughness element, of about 175.

3.2. Stationary crossflow vortex mode packets. Natural secondary instability

During experiments, a packet of stationary vortex modes may be generated effectively
either by a single roughness element or by localized continuous blowing/suction.
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Figure 4. Isosurfaces of the stationary disturbance of streamwise velocity, U ′, due to the
35mm long roughness element (light: −6%, dark: +6 % of Q0).

Indeed, both methods are used in the current paper. To study secondary instabilities
of such a vortex under controlled conditions, it is necessary for the vortex amplitude
to be relatively large, otherwise random natural disturbances will cause the loss of
synchronization, making triggered measurements impossible. Thus, it is necessary to
generate strong vortices, which are therefore nonlinear. In addition, a combination
of nonlinear receptivity and nonlinear stability causes the spanwise extent of the
roughness element to be a crucial parameter of the vortex packet generation, as was
mentioned by Boiko et al. (2000).

Experimentally, we found that the most effectively generated stationary crossflow
mode has a spanwise wavelength of about 20 mm. Experiments by Boiko et al.
(2000) were conducted at nearly the same conditions and they found that a vortex
packet containing primarily this mode can be effectively generated using an isolated
roughness element of about 35 mm spanwise width. In this case, behind a roughness
element a pair of nearly independently developing vortices of opposite rotation and
of necessary wavelength is generated. In figure 4, the mean velocity distortion created
by such a roughness element is shown. Three distinct streaks are observed in the
boundary layer: an area of velocity acceleration right behind the roughness element
and two areas of velocity slow-down on the sides.

The three-dimensionality of the flow pattern of streamwise vortical structures makes
their studies difficult. This is one of the reasons why the mechanism of streamwise
vortical structure formation (at high free-stream turbulence level or behind a three-
dimensional roughness element) is still unclear. Recently, a concept of the lift-up
effect was proposed, see Boiko et al. (2002) for details, which is essentially useful
for understanding of this issue. In particular, one can claim that the lift-up effect
operates at the side edges of a three-dimensional roughness element and forms a
pair of streaks. Additionally, for two-dimensional flows, a direct numerical simulation
by Roget et al. (1998) is available. In this work, the development of disturbance
behind a three-dimensional roughness element is concerned. Unfortunately, no such
investigations exist for the case of a three-dimensional flow.

In our case, the process of formation of the streaks is illustrated by figure 5,
where a slice at xc/cc = 0.54 taken along the leading edge of the wing is shown in
detail. In figure 5(a), contours of mean streamwise velocity are shown and it can be
seen that these are only slightly distorted and the vortices are far from saturation.
Disturbance of the mean streamwise velocity is depicted in figure 5(b), where positive
values of disturbance velocity are shown by solid lines and the dashed lines represent
negative values. It is obvious that the disturbance lies deep inside the boundary layer,
below y/θ =8. Crossflow velocity components are shown by arrows in figure 5(c, d ).
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Figure 5. Mean velocity behind the 35 mm long roughness element at xc/cc = 0.54: (a) stream-
wise velocity, U , (b) disturbance of streamwise velocity, U ′, (c) crossflow velocity components
and (d ) disturbance of crossflow velocity. (e) naturally occurring secondary instabilities are
shown by r.m.s. contours. Contour levels in (a): 0.1138, 0.2276, . . . ,0.9103 of Ue; in (b):
increment between contours is 0.2 of �U0.5, dashed lines used for negative values, solid lines
for positive values, zero-level is not shown; levels in (e): 0.1784, 0.3568, . . . ,0.8921 of u′

max(y,z).

To obtain these graphs, two components, streamwise and spanwise velocity were
measured by a V-probe, and wall-normal velocity is computed from integration of
the continuity equation. In particular, figure 5(d ) explains the formation of the streaks
in the boundary layer. In this figure, it is seen that the crossflow vortex packet consists
of a pair of counter-rotating vortices which form at the sides of the roughness element
and seem to be sufficiently separated from each other to develop without significant
interaction. The symmetry is such that an upward motion is dominating on the
left-hand side of the roughness element and a downwash motion is dominating on
the right-hand side. Furthermore, on the sides at z∗

c around −5 mm and around
35 mm, low-momentum fluid is lifted up from the surface, producing low-velocity
streaks, and in the middle of the plot, behind the roughness element, an opposite
motion is observed, where high-momentum fluid moves down to the wall forming the
high-velocity streak in the boundary layer.

Because of the character of symmetry, namely the dominating upward motion to
the left-hand side and the downwash motion to the right-hand side of the roughness
element, a negative velocity streak is growing downstream to the left and the growth
of a positive velocity streak is observed to the right (see figure 4). It can be noted also
that the vortices are located rather far from the wall and the cores of the stationary
perturbations lie outside the boundary layer. A superposition of the mean crossflow
on the disturbance produces a motion as shown in figure 5(c) and the counter-rotating
vortices are seen as a result. Here, we observe saddle-points at z∗

c ≈ −2mm, y/θ ≈ 3
and at z∗

c ≈ 37 mm, y/θ ≈ 5. At the saddle-point (−2, 3), periodic disturbances grow
intensely, as shown in figure 5(e) and at point (37, 5), secondary instabilities are
triggered further downstream, as will be discussed later. The saddle-points are created
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Figure 6. Contours of mean streamwise velocity and mean streamwise velocity disturbance at
xc/cc =0.58. (a, b) behind circular 8 mm diameter roughness element and (c, d ) behind a hole
with continuous suction. Contour levels used as in corresponding graphs of figure 5.

Roughness element �U0.5/Q0 u1
max(y,z)/Q0

Case Vortex generator size (mm) (xc/cc = 0.58) (xc/cc = 0.58)

A Left-hand side of roughness element 35 × 8 × 0.39 0.13 0.008
An Left-hand side of roughness element 35 × 8 × 0.39 0.13 0.003 (natural)
B Right-hand side of roughness element 35 × 8 × 0.39 0.09 0.015
Ar Circular roughness element �8 × 0.39 0.04 0.004
As Suction – 0.12 0.014

Table 1. Different cases of excitation of crossflow vortex packets.

since the spanwise motion within the disturbance is opposite to the spanwise motion
of the basic flow. From figure 4, we can also obtain an impression on the receptivity
of the boundary layer to the long-wavelength (supercritical) excitation and it is seen
that there is a limit of spanwise wavelength which can be excited, i.e. by increasing the
length of the roughness element, the vortex scale will not increase further. Thus, even
periodically distributed roughness elements of a large wavelength will most probably
generate crossflow vortex packets.

Other cases studied are illustrated in figure 6, where the disturbance from a circular
roughness element and the disturbance created by localized continuous suction are
shown. As the spanwise roughness element size is shortened, the amplitude of the
excited stationary disturbance in the boundary layer diminishes and the streak scales
decrease. For a circular roughness element of 8 mm in diameter, the amplitude of
the vortex at the station xc/cc = 0.58 reduces by about three times as compared to
the 35 mm long roughness element. The wavelength of the generated vortices goes
down to about 15 mm. Physically, the decrease of vortex magnitude can be explained
by an interaction between the counter-rotating side vortices, which increases as
the roughness element size is reduced. Localized continuous suction creates a vortex
packet with dominating modes of about 20 mm in spanwise wavelength, i.e. of the same
scale as the long roughness element. However, this method only allows the generation
of a vortex packet of positive rotation similar to that generated by the left-hand side
of the roughness element. The four cases focused on in what follows are summarized
in table 1. As is shown, the roughness element height was 0.39 mm, which is nearly
equal to the local momentum thickness. The quantity �U0.5 characterizes intensity



Secondary instability in a swept-wing boundary layer 305

f (Hz)

Au
Q0

101 102 103
10–5

10–4

10–3

10–2

10–1

Figure 7. Amplitude spectra of natural secondary disturbance of the stationary vortex packet
of Case A taken at streamwise stations xc/cc =0.55, 0.71, 0.77 (from bottom to top) at positions
of maximum disturbance r.m.s.

of the stationary disturbance, and ui
max(y,z) is the intensity of a time-periodic mode i,

namely,

�U0.5 = 1
2

(
max

y,z
{U ′} − min

y,z
{U ′}

)
, (3.4)

ui
max(y,z) = max

y,z
{u′i}, (3.5)

with U ′ being the stationary disturbance velocity and u′ the time-periodic disturbance
velocity. Two vortex packets generated by the 35 mm long roughness element which
may have different stabilities are denoted as Case A and Case B. Case An differs
from Case A only by way of secondary instability generation, which was not forced
and appeared naturally in Case An. For the 8 mm diameter roughness element, the
left-hand side vortex is dominating and the characteristics are given for this vortex,
named Case Ar. In the fifth case, Case As, the stationary disturbance is generated
by localized continuous suction through a hole of 0.8 mm in diameter with relatively
high suction rate of the order of the local velocity Qe. The localized suction (which is
widely used for boundary-layer control purposes) acts on the flow almost in the same
way as the surface roughness and, moreover, as was mentioned, rather high suction
rates, i.e. energy is required so as to compare to the roughness-like actuator.

At first, secondary instabilities which occur naturally were studied and then, to
allow phase-locked measurements, these disturbances were modelled and introduced
artificially. In table 1, the amplitudes of the first harmonic of the periodic secondary
disturbance, u1, are given as measured at the station xc/cc = 0.58 with artificial
periodic forcing (for all cases except Case An). The frequency of the disturbance was
the same in each case, 210 Hz. This was chosen to be close to the frequency of the
natural secondary disturbance as determined by the spectral analysis (see figure 7)
where some data are shown for the natural secondary instabilities of the vortex packet
in Case A. Here, the spectra are taken at the maximum of the secondary instability
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within the cross-sections. The most amplified secondary perturbations are centred
around 190 Hz, which is a dominating frequency in figure 7. The prevailing frequency
is also the fastest growing one, indicating that the prevailing secondary instability
mode is defined by the local growth rate at the onset point. What is remarkable
is the appearance of higher harmonics of the instability as a periodical disturbance
developing downstream. White & Saric (2005) hypothesize that the higher harmonics
of the dominating frequency observed in their experiment could be independent
secondary instability modes, rather than a result of nonlinear interaction. For the
present experimental conditions, it was possible to give an answer to this question,
which will be discussed later. It is necessary to note that under natural conditions,
without artificial excitation, the secondary instabilities were developing and led to
breakdown in all cases except Case Ar, which was stable in this sense. In what
follows, the instability of these four configurations of the crossflow vortex packets is
examined in a controlled manner and results of the natural instability of Case An are
also provided.

An additional comment should be made on the procedure of the experiment
in Case A and Case B. As depicted in figure 1 of the model set-up, only one
blowing–suction hole is used for the secondary instability injection, and to trigger
the instability the roughness element was moved in the spanwise direction for each
configuration so that the stationary disturbance from one of the roughness element
sides was developing over the blowing–suction hole. For a clearer demonstration the
two experimental cases, A and B are superimposed in figure 8 in the same fashion
as in figure 4. Figure 8 illustrates an important issue of the current experiment,
namely that the two crossflow vortex mode packets, Case A and Case B, which are
triggered by the long roughness element, are separated packets both in the sense
of the stationary mean velocity disturbance and the unsteady secondary instability.
Moreover, the current consideration of the vortex packets in the separate order is an
important point of the transition modelling, since such packets (not symmetric and
of different rotation) are most likely to be triggered under ‘natural’ conditions, as
observed, for example, for a highly perturbed flow on the flat plate (see Brandt &
Henningson 2002). During natural transition, as a rule, the secondary instabilities are
also found to develop in localized fashion.

3.3. Secondary instability of the crossflow vortex mode packets of Case A and Case As

In this section, the crossflow vortex mode packets, Case A and Case As with the
artificially triggered periodic disturbances, are in focus. The vortex of Case A is
created by the left-hand side of the long roughness element and rotates clockwise,
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isosurfaces. Levels are as in figure 8.Note removed positive isosurface in (a).

against the base crossflow near the wall making the wake-type disturbance of the
crossflow velocity component. First, an impression about the total disturbance field is
given in figure 9, where the mean velocity distortion and the secondary perturbation
are shown by isosurfaces of the streamwise velocity. In the figure, the x and z axes are
shown in the same scaling to save proportions. Zero of the spanwise axis coincides
with the location of the periodic point source and the streamwise coordinates are given
as the distance from the airfoil leading edge on the line of z = 0. This figure is a single
frame of obtained time-dependent hot-wire visualization and to clarify the spatial
structure of the secondary disturbance the visualization is shown in figure 9 from
two different viewpoints. The stationary disturbance develops approximately along
the x-axis, hence the wind-tunnel-fixed coordinate system nearly coincides with the
vortex-oriented coordinate system and the same is also true for the external-streamline
coordinate system because the external flow angle is nearly 44◦.

From this graph, considering the development of the stationary disturbance, it
can be noted that for this stationary vortex packet, the low-speed streak is growing
downstream, while the high-speed streak is virtually unchanged. This is probably
extending from the dominating upward motion of the stationary disturbance as
compared to the downwash motion (recall figure 5d ). The secondary instability
disturbance, as can be deduced from the visualization of figure 9, is developing in the
area of strongest spanwise gradient of the streamwise velocity, between two stationary
streaks. What is remarkable is a spatial localization of the disturbance. A description
of the periodical disturbance is complicated by an extremely three-dimensional
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character of the secondary instability, so that the commonly used representation
in the frame of amplitudes and phases is too cumbersome and the present volumetric
graph seems to be the most effective one.

The correlation between the stationary vortex and the secondary instability is
shown in more detail in figure 10. In this figure, contours of mean streamwise
velocity as well as of mean streamwise velocity disturbance are shown with imposed
secondary disturbance for several streamwise positions. The periodical perturbation
is introduced at z∗

c = 0, while the induced disturbance appears about 4mm to the
left. For the current case, saturation of the stationary disturbance happens only far
downstream, near the last section shown in the figure. This can also be deduced from
the shape of the deformation of the mean flow contours, since this is a good indicator
of the vortex state. In particular, a comparison can be made with the illustrations
given in the works by Wassermann & Kloker (2002) and White & Saric (2005). As it
is possible to see from figure 10, the stationary vortex is amplified significantly during
the downstream development and the same is true for the secondary disturbance. The
fact that the appearance of the secondary instability is possible prior to the saturation
of the crossflow vortex is in accordance with some previous works (Boiko et al. 1997;
Malik et al. 1999), however, this phenomenon was not emphasized before. From
figure 10, we can immediately deduce that the secondary disturbance develops in the
area of highest spanwise shear, which is very typical for the ‘z ’ mode of the secondary
instability. At the beginning of the vortex development, two areas of high spanwise
shear exist and the minimum of ∂U/∂z is located approximately at z∗

c = −13 mm,
while the maximum is approximately at z∗

c = −4 mm. A second maximum appears
later on, after xc/cc = 0.65 at z∗

c ≈ 4mm.
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The secondary disturbance, hence, is correlated well with the location of the positive
extremum of the spanwise gradient of streamwise velocity. Also at this location, the
perturbation of spanwise velocity has its negative extremum and the secondary dis-
turbance lies within the wake part of the W -velocity component. In Wassermann &
Kloker (2002), the secondary ‘z ’ mode was found to be situated at the position of
maximum negative spanwise gradient, i.e. in a gradient of opposite sign; however, in
our case, the crossflow component of the base flow also has the opposite direction
to that in the study of Wassermann & Kloker (2002). In the position of maximal
negative W -disturbance, where the instability is located, the gradient ∂W/∂z is zero.
The strongest upwelling motion is located within the low-speed streak. It should
be noted that the three-dimensional nature of the flow on the swept wing makes
identification of the factors for the secondary instability onset more complicated,
as compared to two-dimensional flows and both U and W velocity components
should be taken into account. Indeed, the secondary disturbance has very high
obliqueness as is shown in figure 9 and the wave vector of the disturbance is
almost parallel to the wing leading edge, while the disturbance is developed nearly
along the x-axis. For such a wave, both components of mean velocity are of
significance.

Some workers (Koch et al. 2000) particularly note an important role of the span-
wise velocity component and its gradient, while correlations by Wassermann &
Kloker (2002) are based purely on the consideration of the streamwise component.
In principle, these two attitudes are complementary, since components of the velocity
vector are bounded by the Navier–Stokes equations; however, in the present case
the ∂U/∂z gradient seems to play a dominating role. At the same time, for the
vortex packet and the secondary disturbance as in those in Case A, experiments
by Litvinenko et al. (2003) demonstrate that by reducing the spanwise shear of the
streamwise velocity, it is not always possible to affect the secondary perturbation, thus
the crossflow motion must be taken into account. Furthermore, from figure 10, it is
clear that the artificial disturbance is located in the same area as the natural secondary
disturbance of figure 5(e). As was mentioned in § 3.2, the location of the secondary
instability correlates with a saddle-point of crossflow velocity components, which is
an additional criterion for identification of the secondary instability onset. Points of
this type may be evaluated in experiments/calculations as having a magnitude of
stationary spanwise perturbation velocity extremal and opposite to the local base
flow spanwise velocity. As can be seen in figure 10, both the primary and secondary
disturbances are weakly dispersive and the conservation of the spatial amplitude
function of the secondary perturbation suggests that this mode is an eigen-mode of
the three-dimensional distorted flow. To our knowledge, this fact was never observed
and confirmed experimentally.

As the secondary disturbance evolves downstream, it affects mean velocity and
becomes distorted, which implies that nonlinear interactions between the stationary
and the travelling modes become significant. An indication of this process is the
appearance of higher harmonics of the main frequency of the travelling disturbance.
First and second harmonics of the travelling disturbance are shown in figure 11.
As is obvious, the maximum of the second harmonic is highly correlated with that
of the first harmonic. An early conclusion which can be drawn from the above
data is that the second harmonic is a product of the nonlinear interactions rather
than of an additional travelling mode. Figure 11(a) also shows that the secondary
disturbance is highly correlated with the critical layer, where local velocity is equal
to the phase velocity of the disturbance. An interpretation of this fact is that the
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Figure 11. (a) First and (b) second harmonics of the secondary disturbance at xc/cc = 0.69
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the local maximum of perturbations.

secondary instability travels with the local flow velocities and this is very typical for
instabilities of the inviscid type.

The crossflow vortex mode packet in Case As differs from that in Case A by the
method of the disturbance generation and in Case As the continuous localized suction
was used. A generated stationary vortex packet differs somewhat from the packet of
Case A (cf. figures 6c, d and 5). In particular, the spanwise scale of the positive streak
is much smaller in Case As. However, since the amplitudes of the vortex packets in
cases A and As were very close and amplitudes of the secondary travelling disturbance
were comparable, the spatial structure of the secondary disturbance in Case As was
not significantly different from that in Case A. Higher amplitude of the secondary
disturbance led to earlier nonlinear interactions, in particular, superharmonics were
generated faster.

In the following sections, secondary instability of other crossflow vortex mode
packets is considered and, as will be demonstrated, the secondary stability properties
of such packets are altered.

3.4. Secondary instability of the crossflow vortex mode packet of Case B

In Case B, the stationary vortex is created by the right-hand side of the long roughness
element; this spanwise-localized vortex rotates counterclockwise, co-flowing the base
crossflow near the wall and the disturbance of the crossflow velocity component is of
jet-type. Receptivity of this vortex packet with respect to the secondary disturbance
was found to be lower as compared to Case A, so that the amplitude of the periodical
blowing-suction was increased to about twice that in Case A. The total disturbance
field is given in figure 12, where again the mean velocity distortion and the secondary
perturbation are shown. In this figure, the zero of the spanwise axis also coincides
with the location of the periodic point source, and the streamwise coordinates are
given as a distance from the airfoil leading edge on the line of z = 0. As is seen, the
stationary disturbance has nearly the same obliqueness angle as in Case A, however,
the low-speed streak is more spread out, thus stationary modes grow in a different
way as compared to Case A, indicating that the nonlinear effects are of importance
for the development of the stationary disturbance. Additionally, it can be noted that
for this stationary vortex packet the high-speed streak is growing downstream and
the amplitude of the low-speed streak is nearly conserved. Hence, the stationary
disturbance behaves virtually in an opposite fashion as compared to Case A, where
the low-velocity streak was amplified. Again the explanation lies in the formation
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Figure 12. Mean velocity distortion and secondary disturbance of Case B shown by
streamwise velocity isosurfaces, the values for isosurfaces are as in figures 8 and 9.

of disturbance (cf. figure 5d ), since the downwash motion is dominating over the
upward motion. Another, and more important difference, as compared to Case A, is
the location of the secondary instability disturbance, which is developing inside of
the low-speed stationary streak. The secondary disturbance is space-localized as well
and it seems that the spanwise extent of the secondary instability is dictated by the
spanwise scale of the stationary low-speed streak. From the graph, we can also see
that the angle of the phase velocity vector of the periodical disturbance increases with
streamwise distance. It is possible to explain this effect by nonlinear interaction of
the travelling disturbance with the mean flow. Such a clear change of the obliqueness
of the travelling-wave packet is not visible for the secondary disturbance considered
previously, in Case A.

Details of the stationary vortex and the secondary instability development are
shown in figure 13. As can be seen, the stationary disturbance, as for Case A,
saturates near the last section and the discussions of § 3.3 are also appropriate to
Case B. Also, a secondary disturbance shift from z∗

c = 0, where it was introduced,
can be observed, however, the shift now is nearly 4 mm to the right. Again, the
induced secondary disturbance seems to be located in the most favourable position.
Furthermore, a significantly larger dispersion of the low-speed streak can be observed
as compared to the streak of the vortex packet Case A. The secondary perturbation
reveals conservation of the shape of the amplitude function at the initial stage of
its development, and nonlinear effects cause subsequent change of the amplitude
function. At the early stage, it is most likely that the eigen-mode is triggered in the
flow. Figure 13 clearly demonstrates that the secondary perturbation develops within
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Figure 13. Contours of (a) mean streamwise velocity and (b) mean streamwise velocity
disturbance with imposed first harmonic of secondary disturbance (shading) for Case B.
Streamwise coordinates and levels are as in figure 10.

the low-speed streak, where the spanwise gradient of the streamwise velocity is nearly
zero, hence, the mode of the secondary instability differs from the ‘z ’ mode.

The secondary disturbance is spanning the whole streak width and, in addition, we
can see that this perturbation is located somewhat further from the wall as compared
to Case A. Also, the maximum of the secondary disturbance is slightly off the low-
speed streak minimum. As has been pointed out by Malik et al. (1999), the secondary
instability modes on the swept wing can be classified by the energy production
associated with either the surface-normal or the spanwise gradients as ‘y ’ or ‘z ’
modes. Performing analysis of the U and W velocity profiles, it was found that the
location of the secondary instability correlates with the minimum of the wall-normal
gradient of spanwise velocity. Both ∂U/∂z and ∂W/∂z gradients do not reveal extrema
at this location. Furthermore, a comparison with Wassermann & Kloker (2002) can
be made, where the ‘y ’ mode is also located within a low-speed streak in the region
of strong upwelling fluid motion. Hence, the character of the disturbance testifies to
a ‘y ’ mode of the crossflow secondary instability. In principle, this is consistent with
an observation of Bottaro & Klingmann (1996) for the instability of Görtler vortices,
namely that sinusoidal modes of instability prevail in vortices with small spanwise
wavelength while varicose modes dominate long-wave vortex structures. Asai et al.
(2002) for streaks in Blasius flow also deduced that when the low-speed streak is wide
it becomes more unstable to the symmetric modes than to the antisymmetric modes.
Physically, it is probably because the vortices with large wavelengths provide weaker
spanwise shear and the vortices with short wavelengths induce a strong one. This,
particularly, is true for a magnitude of positive ∂U/∂z gradient, which is significantly
weaker in the current experimental Case B as compared to Case A. Also note that
while the secondary instability disturbance of Case B is located near the point of
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figure 11.

inflection of the spanwise velocity, the perturbation of this velocity component by
the stationary vortex packet is rather small (see figure 5c), and the presence of the
low-speed streak seems to be of importance for the secondary instability onset and
development.

As a travelling disturbance develops downstream, its amplitude increases and
nonlinear interactions become significant. In the current Case B, similarly as in
Case A, flow breakdown occurs with the generation of higher harmonics of the main
disturbance frequency. The location of the second harmonic with respect to the first
is shown in figure 14. As for Case A, the first and second harmonics of the travelling
disturbance are very well correlated, as can be seen in this figure. The critical layer
is depicted in figure 11(a) and it is observed that this mode of secondary instability
also travels with the local flow velocities.

3.5. Influence of the primary vortex packet amplitude on the secondary instability
development (Case Ar)

As was found, breakdown of the stationary vortex packet owing to the development
of a secondary periodical disturbance occurs when the amplitude of the primary
stationary perturbation exceeds a certain critical value. At the same time, it is not a
mandatory condition for the stationary vortex to saturate. Existence of a threshold
for the secondary instability is noticed by most workers and to verify the threshold
conditions, a crossflow vortex packet of lower amplitude was generated in the swept-
wing boundary layer. A decrease of vortex amplitude was obtained by reducing
the spanwise extent of the vortex generator (roughness element). The roughness
element used had cylindrical shape and this case is called Case Ar. As was discussed
earlier, in this case, the crossflow vortex packet is formed with the interacting side
vortices produced by the spanwise edges of the roughness element. As a result, the
amplitude of the stationary disturbance was reduced to about three times that in
Case A. Subsequently, the vortex packet development did not lead to laminar-flow
breakdown and growing secondary instabilities did not appear. To excite the travelling
disturbance, the amplitude of the periodic blowing–suction was increased to about
four times that in Case A.

The circular roughness element initiates a crossflow vortex packet producing streaks,
as shown in figure 15(a). Two streaks are visible here and the third one of low speed
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exists to the right-hand side of the roughness element, however, it has a very low
amplitude and is not seen at the given level of isosurfaces. In figure 15(b), the
triggered periodical disturbance is presented. A close consideration of the travelling
perturbation suggests that the excited wave packet is somewhat different from the
wave packet in Case A. In particular, initially a large portion of the secondary
perturbation is located within the low-speed streak and this part of the wave packet is
diminishing in amplitude while travelling downstream. After a streamwise coordinate
of 0.65 chord, the shape of the wave packet and its location is becoming closer to
those of the ‘z ’ mode in Case A. Furthermore, the amplitude of the wave packet is
nearly constant at different streamwise stations.

A contour slicing of several streamwise positions shows the stationary and the
periodical disturbances in detail (see figure 16). As can be seen, the contours of
total mean velocity are only slightly deflected, even at the most downstream section.
Notably, in spite of the obvious nonlinearity of all vortex packets studied, the two
parts of the stationary vortex packet in Case Ar are like those in Case A and Case B.
The process of formation and evolution of the vortices is very similar, namely, the
left-hand side of the narrow width roughness element generates a vortex as in Case A
and on the right-hand side, the vortex is as in Case B. Also, substantial growth of
the low-speed streak is observed to the left and the high-speed streak increases in
amplitude with the streamwise development to the right of the roughness element.
Thus, despite the nonlinearity of the vortex packets, their formation and development
is governed by simple physical mechanisms.

Considering the periodical disturbance, it can be noted that its projection on the
(y, z)-plane is similar to the secondary disturbance in Case A and does not reveal its
different three-dimensional aspect as the volumetric visualization does. The periodical
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disturbance with imposed first harmonic of secondary disturbance (shading), Case Ar.
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disturbance generated in the flow, despite the rather high amplitude of forcing, is of
significantly lower amplitude as compared to Case A and, as the contour shading
demonstrates, the amplitude of the travelling disturbance is virtually unchanged while
the perturbation is developing in the streamwise direction. Also as seen, the excited
periodical disturbance has completely died out around the spanwise coordinate of the
excitation, z∗

c =0 and exists far to the left. A further note is that the stationary vortex
packet with the travelling instability is visibly convected to the right in figure 16,
while developing downstream, which was not observed in the previous vortex packet
cases. It seems that this lower-amplitude vortex lies deeper in the boundary layer and
does not extend much outside, thus it is more affected by the base crossflow near the
wall.

3.6. Further considerations

In the previous sections, different stationary crossflow vortex mode packets and their
secondary instabilities were considered. It is demonstrated that triggered secondary
instabilities depend mainly upon the character of the primary stationary vortex and
are of inviscid character. In this section, the mechanisms driving the secondary
instabilities are considered in more detail.

The summary of the two instability modes investigated is presented in figure 17.
It is obvious that the formation of the localized areas of non-uniform flow (streaks)
cause the non-equilibrium flow and, in order to return to uniformity, the flow tends
to smooth out these areas. Such processes are also very common in different generic
flows. Considering figure 17, we can associate breakdown of a low-speed streak in the
swept-wing boundary layer via the ‘z ’ instability mode with the breakdown of a plane
shear layer. The breakdown of a low-speed streak via the ‘y ’ instability mode can be
related to the breakdown of the wake behind a bluff body. However, in the swept-wing
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Figure 18. Schematic of disturbance velocity distributions of two basic crossflow vortex
mode packets. (a) Localized vortex of positive rotation with preferred ‘z ’ mode of secondary
instability and (b) Localized vortex of negative rotation with preferred ‘y ’ mode of secondary
instability. Symbols mark observed location of maxima of secondary instability. Natural insta-
bility: ×, high-frequency and �, low-frequency instability in the present experiment; +,
broadband fluctuations in experiment of Boiko et al. (2000). Forced secondary instability:
�, present experiment; bold lines, experiment of Kozlov et al. (2001).

boundary layer the flow symmetry is changed owing to crossflow and the symmetry
of the breakdown is apparently different. Also, as was demonstrated, the developing
disturbances are of obvious three-dimensional character. It is well known that the
characteristics of secondary instability in boundary layers are strongly dependent on
the primary instability affecting the secondary disturbance frequencies, amplification
rates, origination and dominance of a distinct type of instability and these factors are
coupled by complex equations.

To distinguish the two modes of secondary instability more carefully, a schematic
diagram is represented in figure 18. As was observed, the major difference between
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the two primary vortex packets investigated is created because of the different signs of
their rotations (or sign of the streamwise vorticity component, ωx) and this is reflected
in the diagram. The vortex packet in figure 18(a) has positive streamwise vorticity,
the vortex packet shown in figure 18(b) has negative streamwise vorticity and the
direction of the base crossflow is assumed to be positive. A localized vortex with
positive rotation has mean velocity distributions as depicted in figure 18(a) and the
localized vortex having negative sign of rotation (counterclockwise) as in figure 18(b).
In the scheme it is assumed that these two vortex packets have all three perturbation
velocity components of the opposite sign. In spectral space, this appears as a shift
of all the streamwise stationary modes by π radians in phase. It is clear that from
the viewpoint of the secondary instability theory (see e.g. derived equations by Malik
et al. 1994), these two vortex configurations would create different conditions for the
secondary perturbations since some of the production terms in the equations are not
the same. In particular, the sign of strongest gradient ∂U/∂z, the modification of
crossflow velocity, which either increases or decreases the existing crossflow and the
width of the formed low-speed streak are different.

Considering our experiment, we can correlate the vortex packet model in figure 18(a)
with the stationary vortex packet in Case A and the model in figure 18(b) with the
stationary vortex packet in Case B, respectively. In fact, the diagrams are drawn
based upon the experiment. The observed location of the maxima of secondary
instabilities with respect to the vortex packets is marked on the diagrams as was
seen during the tests. The summary is made from the present results and from results
of Boiko et al. (2000) and Kozlov et al. (2001). In the present experiments, natural
low-frequency (around 25 Hz) secondary instability packets were observed and in
the previously discussed figure 5(e), the broadband disturbance located at z∗

c = 30 mm
consists primarily of this frequency. In Case A, the low-frequency instability is located
slightly off the high-frequency mode, just on the side of the low-speed region and
in Case B, this instability is closer to the area of the highest spanwise shear, being
within the low-speed streak. It is seen that for both positively and negatively rotating
vortices, the secondary disturbances are located either inside the area of streamwise
velocity deceleration or near the position of highest spanwise gradient of this velocity
component. As our analysis revealed, the preferred secondary instability modes of the
vortex packet with positive rotation are of ‘z ’ type and the preferred modes of the
vortex packet with negative rotation are of ‘y ’ type. As can be seen, the presence of
a strong positive ∂U/∂z gradient (of the same sign as the base crossflow) favours the
‘z ’ mode of secondary instability. As this gradient is weak and the low-speed streak
is wide, the instability mode of ‘y ’ type is established within the low-speed streak.

Experimental velocity profiles behind the 35 mm roughness element are shown in
figure 19. Spanwise profiles of streamwise velocity are given in figure 19(a) and a clear
relation can be found with the previously discussed figure 18. Also, it can be seen
why the vortex packets are more unstable as compared to single-mode disturbances.
Within the vortex packet, possible velocity distortions are significantly sharper than
in sinusoidal-like stationary vortices and in this sense the vortex packet is similar
to the saturated single-mode vortex, although the individual spectral components of
the packet are not yet saturated. The simplified explanation would be as follows.
The maximum gradient due to a sinusoidal disturbance of amplitude A having
wavenumber αz is αzAmax and for the packet of modes, the largest possible gradient
would be a sum of the gradients due to each mode αz1Amax1 +αz2Amax2 + · · · and so on,
thus higher. Then, the observed spanwise profiles are closer to a tangent hyperbolic
shape than to the shape of a sinusoid.
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Figure 19. Experimental velocity profiles at xc/cc = 0.54 behind 35mm roughness element.
Data in (a) corresponds to y/θ = 1.28, 1.77, . . . , 7.66. Measured values in (b) are denoted by
dots, lines are polynomial data fit, dashes denote undisturbed profiles, stars mark the inflection
of the fitting polynomials. �, observed wall-normal location of ‘y ’ mode of secondary instability
at z∗

c =40 mm; �, wall-normal location of ‘z ’ mode of secondary instability at z∗
c = −3 mm.

At the same time, the wall-normal velocity profiles in the present case are not
significantly distorted, as shown in figure 19(b). In this figure, inflection points and
the location of secondary disturbances are also marked. In the present case, the
substantial modification of the crossflow velocity component (either promotion or
reduction) by the primary vortex, as shown in figure 19(b), mainly affects the location
of the secondary instability with respect to the wall, which is strongly correlated with
the inflection point of the crossflow velocity component. This is true for both ‘y ’ and
‘z ’ secondary instability modes. At the same time, the correlation with the inflection
of streamwise velocity is not observed. It seems that the most amplified secondary
instability modes in the study of Wassermann & Kloker (2002) are as well correlated
with the inflection point of the crossflow velocity component. Thus, we can see a
relationship between the primary instability of a flow and the secondary instability
of the same flow modified by a large-amplitude disturbance so that the driving
mechanisms seem alike. This idea can also be supported from another viewpoint. If
we consider the secondary instability of the streaks in different flows, we will see that
there is an apparent relationship between the critical Reynolds number of the flow and
the critical amplitude of the streaks. For example, in a plane Poiseuille flow, reported
values of the critical streak amplitude, which is necessary for the secondary instability
onset, �U0.5, are around 35 % (Elofsson et al. 1999), in a Blasius boundary layer they
are close to 25 % and 40 % (Andersson et al. 2001; Asai et al. 2002), respectively,
for sinuous and varicose secondary instability modes, and in a two-dimensional flow
with adverse pressure gradient they are about 15 % (Kozlov et al. 2004).

For a given flow, the threshold value seems not to be affected by a change of
Reynolds number because of the inviscid character of the secondary instability. The
presence of the crossflow velocity component significantly decreases the stability of
the swept-wing flow besides the effect of the adverse pressure gradient. Since the
critical Reynolds number is lower, it seems that the threshold for the secondary
instability onset, as compared, for example, to the Blasius flow or the swept wing flow
with favourable pressure gradient, would decrease.

Streamwise development of the stationary primary disturbances and of the
secondary instabilities is shown in figure 20. The magnitude of �U0.5 was identified
along the spanwise extent, as was shown in the previous visualization figures for
the corresponding cases. The saturation of the two strongest vortex packets can be
observed after a streamwise coordinate of about 0.7. The similarity of the growth
of the vortex packets in Case A and Case B seems to be because these vortices are
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Figure 20. Downstream development of (a) the stationary disturbance and (b) first harmonic
of high-frequency secondary instability for different cases studied. Symbols are from experiment
and lines are polynomial data fit. �, Case A; �, Case B; �, Case Ar; �, Case An. Amplitude
of the first harmonic of secondary disturbance at xc/cc = 0.58 is given in table 1.

generated by two different sides of the roughness element and might really have the
same streamwise vorticity but of different sign. In turn, the modal decomposition of
these disturbances is not so straightforward to interpret and demonstrate strongly
nonlinear behaviour of the separate spanwise modes. As was discussed previously,
the secondary instability onset is mostly associated with the spanwise gradient of
streamwise velocity and with the presence of local areas of low-momentum fluid
(low-speed streaks). The criterion of �U0.5 seems to reflect adequately both these
factors and so far is conventionally used for the prediction of secondary instability in
different flows. From the point of view of an experimentalist, it is also important that
its value can be identified in the experiment with relative ease and good accuracy.
In the current case it was found that the threshold value of �U0.5 for the secondary
instability onset is approximately 7–10 %.

If a comparison of the growth of the natural secondary instability and the growth
of the artificially excited mode within the vortex packet in Case A is made, it will
be seen that down to the section xc/cc of about 0.7, the growth is independent
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of the initial disturbance amplitude and this happens despite the amplitudes of
secondary instabilities reaching significant values prior to this position (about 4 %
in Case A and 2 % in Case An). The independence of the growth from the initial
amplitude indicates a linear behaviour of the secondary instability. The linearity of
the travelling disturbances, such as that in Case A, was testified in more detail in
Boiko et al. (1997). In addition to the linearity of the perturbations at the initial stage,
they proved independence of the disturbance propagation velocity along the vortex
from the amplitude, the way of excitation and frequency. Also, they demonstrated the
fulfilment of the superposition principle for the waves by showing that interaction of
waves of different frequencies (combinational modes) did not appear up to their total
amplitude of about 1 %.

The linear behaviour of the waves indicates that they represent a secondary linear
instability of the flow, being therefore a subject for secondary instability theory. At
the same time, it is not necessary for these waves to be eigenmodes, i.e. with amplitude
eigenfunctions. Usually, a certain distance is required for the disturbance to convert
to the eigenmode and, as a result, the eigenmode theory would not necessary precisely
predict the growth of the waves from their very origin. Furthermore, from figure 20
it is possible to observe that initially the growth rate of the ‘y ’ mode of secondary
instability (Case B) is several times lower that that of the ‘z ’ mode (Case A and
Case An), while nonlinear growth of these two different modes after xc/cc = 0.65 – 0.7
is nearly the same. In the subcritical Case Ar, the secondary instability disturbance is
nearly neutrally stable since its amplitude is almost constant. It is necessary to note
that to obtain the values of u1, which are shown in this graph, maximum amplitudes
of the disturbance were determined from the velocity maps, see (3.5) for definition.

The character of the development of the superharmonics of secondary instabilities
(figure 21) suggests their nonlinear origin from the main harmonics. We can see that
the total amplification of the second harmonic over the x-range shown in the figure
in both cases is (about twice) higher than that of the main mode, while the third
harmonic grows even faster (about triple). Such behaviour is very typical for the
nonlinearly generated disturbances. Hence, it is possible to conclude that these modes
are produced nonlinearly from the main secondary instability modes.

Since the growth of the ‘z ’ and ‘y ’ modes of secondary instability is different, it is
important to know the conditions which favour one or the other instability mode.
Then it might be possible to control the flow in the sense of avoiding, for example,
onset of ‘z ’ modes. Of course, one possible way of flow control immediately arises
from the consideration of the vortex packet created owing to the circular roughness
element in Case Ar, since, firstly, it was shown that the interaction of the counter-
rotating vortices on the sides of the roughness element leads to the mutual damping of
the vortices and secondly, that the flow excitation at subcritical wavelengths produces
lower growth of the vortices. The latter effect is very similar to the idea behind the ups-
tream flow-deformation technique, which is discussed in the work by Wassermann &
Kloker (2002) and the former effect can also be used for flow-control applications. In
principle, after detecting a vortex, an opposite vorticity can be employed to damp it.
However, this task is certainly not trivial, as experiments (Litvinenko et al. 2003) and
computations (Messing & Kloker 2000) demonstrate, and the control scheme also
requires an optimization. Meanwhile, this is an additional possibility to the technique
of upstream flow deformation.

Concerning the factors affecting the preferred secondary instability mode, it is
expected that the ratio of the vortex width to the vortex height is the governing
parameter. The vortex height in our case can be defined as, for example, the distance
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Figure 21. Downstream development of first, second and third (from top to bottom in each
graph) harmonics of secondary instability at their maximum values. (a) Case A, (b) Case B,
lines are fitting polynomials.

from the wall to the point of the highest spanwise gradient of streamwise velocity,
similarly to Wassermann & Kloker (2002). In our experiments, we found the vortex
height to be about 3θ and 4θ in Case A and Case B, respectively. The vortex width
can be defined as the distance between the nearest strongest maxima and minima of
the gradient. This value is approximately 12θ and 27θ in the above cases. Therefore,
the vortex packet which favours the ‘y ’ mode of secondary instability has about a
1.5 times larger width-to-height ratio. An analysis was also performed of results by
Wassermann & Kloker (2002) and it was found that where the ‘z ’ instability modes
were observed, the ratio of the vortex width to height is approximately unity, while
in their Case 4B, where the ‘y ’ instability mode is generated, the ratio is nearly
1.4. Thus, in a very similar way, the width-to-height ratio is defining the secondary
instability as was observed in two-dimensional flows. This could be a possible reason
for explaining why in some swept-wing transition experiments only ‘y ’ type modes of
secondary instability are observed and in others ‘z ’ type modes are prevailing.
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4. Conclusions
As a result of the current study, experimental data on secondary instability in a

swept-wing boundary layer including characteristics of the base flow, primary stream-
wise vortices and secondary perturbations was obtained. Detailed measurements
were performed with both stationary vortices and secondary instabilities excited in a
controlled manner. The characteristics of secondary instability obtained include phase
information, growth rates and the development of nonlinear harmonics.

Wassermann & Kloker (2002) clearly demonstrated that packets of stationary
crossflow vortices are most dangerous with respect to the secondary instability
onset. In experiments under natural conditions, the stationary-flow modulation also
appears non-uniform, testifying to the presence of packets rather than to single-mode
stationary vortices. Also, the experiments revealed that the secondary instabilities
develop within the packets of highest amplitude in an independent manner from the
surrounding vortices. These packets represent the flow modulations of an alternating
weak/strong vortex pattern, which is different from the modulation by regular vortices
having a medium/medium pattern. It is expected that the character of the vortex
packets, being composed from several spanwise modes, allows these disturbances
to induce stronger distortions of the flow, namely stronger spanwise gradients. In
this sense, the vortex packet is similar to a saturated single-mode vortex, which
also induces higher gradients. As our study demonstrates, the saturation of primary
stationary modes is of itself not a major necessity.

It can be assumed that under natural conditions of transition, such packets in a
boundary layer may be triggered by some localized space forcing, for example, by
isolated elements of surface roughness. In the present case, these conditions were
modelled. It was found that in a three-dimensional boundary layer, two types of
stationary vortex packets are possible, which can be named fundamental. These two
packets represent localized vortices of different directions of rotation. It seems that
the most important differences of these two vortex packets are in the different signs
of the strongest gradient ∂U/∂z, the different modification of the crossflow velocity
which either increases or decreases the existing crossflow and, finally, in the different
width of the low-speed streak formed.

Packets of positively rotating vortical disturbances (clockwise for the positive base
crossflow) are found to be more favourable for the secondary instability. In our
case, these packets lead to the quickest flow breakdown, which is associated with
the development of the ‘z ’ mode of secondary instability. The topology of negatively
rotating packets is such that they can be more stable and can favour development of
the ‘y ’ mode of secondary instability. An important observation is that the localized
suction generates a vortex packet of high instability similar to the positively rotating
vortex generated from the roughness element. Thus, when the localized suction is used
for flow-control purposes on the swept wing, this effect should be considered. On the
other hand, since the disturbances developed owing to suction are very close to the
disturbances derived from the roughness elements, the roughness elements might be
used for the flow control instead of suction. It was also observed that the nonlinear
interaction of the stationary disturbances having the form of a pair of counter-rotating
vortices (as those created by two sides of a roughness element) leads to their mutual
damping and, in principle, this effect can be used in flow-control strategies. However,
it does require optimization. It was also demonstrated that excitation of a stationary
mode of very high wavelength is hardly possible since the vortex generator of large
span produces a pair of isolated vortices (vortex packets).
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Overall, we found that ‘z ’ type modes of secondary instability, which develop in
extreme spanwise gradients of streamwise velocity, seem to grow faster than ‘y ’ type
modes, which were observed further from the wall within the low-momentum area of
the vortex. The location of both instability modes is found to correlate well with the
inflection of the spanwise velocity component. Analysis of these results and results
of other available works suggests that, in general, the inflection of the crossflow
velocity component favours secondary instability onset around this location. The type
of distortion of spanwise velocity component (promotion or reduction) seems not
to affect secondary instability much, while the added disturbance velocity moves the
inflection point of the crossflow velocity component with respect to the wall.

The phase velocity vector of secondary instabilities is found significantly angled
to the external flow streamline and to the primary stationary vortex (approximately
50◦–70◦). The obliqueness might increase further when nonlinear interactions occur
between the secondary disturbance and the mean flow. The secondary disturbances are
almost non-dispersive during the linear and weakly nonlinear stages of development.
As a result the secondary perturbations keep at a constant location relative to the
primary vortex and within the vortex. Further, when nonlinear interactions take
place, they result in a significant spreading out of perturbations in the direction of
the crossflow and this nonlinear process should be a subject for further investigations.

An observation was made that the ratio of the vortex width to the vortex height
might be a determining factor for the selection of the secondary instability mode.
The vortex packet, which favours a ‘y ’ mode of secondary instability has about
1.5 times larger width-to-height ratio than the vortex packet with a ‘z ’ mode of
secondary instability. This is might be a possible explanation of the fact that in
different experiments, different types of secondary instabilities are observed as being
dominant.

The threshold condition for the secondary instability in terms of the average
between the maximum and minimum of the stationary disturbance of the streamwise
velocity is about 7–10 %. Within the primary vortex of the amplitude below the
threshold value, the secondary instabilities are found to be nearly neutrally stable.

As secondary instabilities develop, nonlinear interactions occur and the nonlinear
development of the travelling secondary instabilities is found to be associated with
the production of higher harmonics of the secondary instability frequency.
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